Search results for "Fast marching"
showing 3 items of 3 documents
Estimation of Electrical Pathways Finding Minimal Cost Paths from Electro-Anatomical Mapping of the Left Ventricle
2014
The electrical activation of the heart is a complex physiological process that is essential for the understanding of several cardiac dysfunctions, such as ventricular tachycardia VT. Nowadays, electro-anatomical mappings of patient-specific activation times on the left ventricle surface can be estimated, providing crucial information to the clinicians for guiding cardiac treatment. However, some electrical pathways of particular interest such as Purkinje or still viable conduction channels are difficult to interpret in these maps. We present here a novel method to find some of these electrical pathways using minimal cost paths computations on surface maps. Experiments to validate the propos…
A Stochastic Algorithm Based on Fast Marching for Automatic Capacitance Extraction in Non-Manhattan Geometries
2014
WOS:000346854900026 (Nº de Acesso Web of Science) We present an algorithm for two- and three-dimensional capacitance analysis on multidielectric integrated circuits of arbitrary geometry. Our algorithm is stochastic in nature and as such fully parallelizable. It is intended to extract capacitance entries directly from a pixelized representation of the integrated circuit (IC), which can be produced from a scanning electron microscopy image. Preprocessing and monitoring of the capacitance calculation are kept to a minimum, thanks to the use of distance maps automatically generated with a fast marching technique. Numerical validation of the algorithm shows that the systematic error of the algo…
Estimation of Purkinje trees from electro-anatomical mapping of the left ventricle using minimal cost geodesics
2015
The electrical activation of the heart is a complex physiological process that is essential for the understanding of several cardiac dysfunctions, such as ventricular tachycardia (VT). Nowadays, patient-specific activation times on ventricular chambers can be estimated from electro-anatomical maps, providing crucial information to clinicians for guiding cardiac radio-frequency ablation treatment. However, some relevant electrical pathways such as those of the Purkinje system are very difficult to interpret from these maps due to sparsity of data and the limited spatial resolution of the system. We present here a novel method to estimate these fast electrical pathways from the local activati…